

EVALUATING THE SAFETY AND SECURITY OF AUTOMATION PRODUCTS, SUPPLIERS AND SYSTEMS

John Cusimano exida

Control System Security Layers of Responsibility

End User (Security management system) System Integrator (System engineering practices, Qualified Personnel) **Automation Supplier** (Software Development, Vendor Practices) **Automation Products** (Security features, Testing)

ISA99 Work Products

Control System Security Layers of Responsibility

Measuring Compliance

Layers of Responsibility

The Security Lifecycle

Assess

Perform risk assessment and gap analysis (existing)

> Establish Zones & Conduits (Z&C)

Determine appropriate Security Level targets

Implement

Design Z&Cs to meet target Security Levels

Validate and test

Determine the achieved Security Level

Maintain

Conduct periodic vulnerability assessments

Test & deploy patches Implement additional security measures (if necessary)

Copyright © 2010 - exida

Adapted from ISA S99.01.01

The Assess Phase

- Understanding where you are and where you want to be
- Start with a high-level risk assessment
- Identify major gaps between existing system and relevant regulations, standards and best practices
- Partition the system into areas with common security requirements (e.g. zones, electronic security perimeters)
- Establish security goals or targets for each zone

Security Inherent Risk and Risk Reduction

Consequence

Quantitative assessment of probability and criticality

	[Probability	Critic	ality			
A = Very Likely B = Likely C = Not Likely D = Remote Chance		1 = Severe Impact 2 = Major impact 3 = Minor impact					
		D = Remote Chance	4 = No impact				
▼	-		Impact Category	1 = Severe	2 = Major	3 = Minor	4 = None
Network Segment	Thr Pro	eat bability	Injury	Loss of life or limb	Requires Hospitaliza -tion	Cuts, bruises requiring first aid	None
Internet, Wireless, Direct Dial-in	A =	Very Likely	Financial loss	Millions	\$100,000	\$1,000	None
Internet, Secure Dial-in	B =	Likely	Environmental release	Permanent damage/ off.site	Lasting damage	Temporary damage	None
Integrated MCN	C =	Not Likely		damage			
Isolated MCN	D = Cha	Remote ance	Interruption of Production	Week	Days	Minutes	None
			Public Image	Permanent	Lasting	Temporary	None

damage

Copyright © 2010 - exida

Source: ANSI/ISA TR99.00.02-2004

tarnish

blemish

Sample Risk Matrix

	Data Assets	Criticality					
		1 Severe	2 Major	3 Minor	4 None		
obability	A – Very Likely	Mitigation required	Mitigation required	Mitigation required (to Intranet perimeter)	Mitigation required (to Intranet perimeter)		
Ри	B – Likely	Mitigation required	Mitigation required				
	C – Not Likely	Mitigation required		()			
	D – Remote Chance						

Security Vulnerability Assessment Example

		Possible Threat					
Threat	Vulnerability	Source	Skill Level	Potential Consequence	Severity	Likelihood	Risk
Release of hazardous product	Manipulate control system	Organized Crime, Activist	Intermediate	Major Injury Complaints or Local Community Impact	Medium	Low	Low-Risk
	Disable/manipulate emergency shutdown	Terrorist, Organized Crime, Activist	High	Fatality or Major Community Incident	High	Very Low	Low-Risk
Process reactivity incident	Manipulate control system	Domestic or Foreign Terrorist, Disgruntled Employee	Intermediate	Lost Workday or Major Injury Complaints or Local Community Impact	Medium	Low	Low-Risk
	Disable/manipulate emergency shutdown	Domestic or Foreign Terrorist	High	Fatality or Major Community Incident	High	Very Low	Low-Risk
Process shutdown	Trip emergency shutdown	Malware, Novice Hacker	Low	Shutdown > 6 Hours	Medium	High	High-Risk
	Cause Loss of View of SIS	Malware, Novice Hacker	Low	Shutdown < 6 Hours	Medium	Medium	Medium- Risk
	Manipulate control system	Hacker, Disgruntled Employee	Intermediate	Shutdown > 6 Hours	Medium	Medium	Medium- Risk
	Disable PCN communications	Malware, Novice Hacker	Low	Shutdown < 6 Hours	Low	High	Medium- Risk
	Spoof operators	Hacker, Disgruntled Employee	Intermediate	Shutdown < 6 Hours	Low	Medium	Low-Risk
Environmental spill	Manipulate control system	Activist	Intermediate	Citation by Local Agency	Medium	Low	Low-Risk
	Mislead operators	Activist	Intermediate	Citation by Local Agency	Medium	Low	Low-Risk

System Architecture

Partitioning into Zones

Figure 17 - Multiplant Zone Example

Zone Definition

- Zone Name
- Description
- Function
- Zone Boundaries
 - Physical
 - Logical
- Asset Inventory
 - Physical
 - Informational
 - Applications
- Conduits
- Risk Assessment

- Security Objectives
 - Availability
 - Integrity
 - Confidentiality
- Security Strategy
 - Physical Boundary Protection
 - Cyber Boundary Protection
- Zone Security Policies
 - Personnel
 - Physical Access
 - Information Network Policies

Implement

Design Z&Cs to meet target Security Levels

Validate and test

Determine the achieved Security Level

The Implement Phase

Design to close gaps and minimize vulnerabilities

- Redesign network architecture if necessary
- Implement countermeasures
- Validate using Defense-in-Depth Analysis[™] or other technique

Typical Countermeasures

- Network Architecture
- Personnel Security
- Physical Security
- Policies & Procedures
- Access Control

Multi-Layer Architectures

Image Courtesy of Honeywell Process Control

Defense-in-Depth Analysis

- Semi-quantitative risk assessment method
- Supports decision making
- Parallels Layer of Protection Analysis (LOPA) used in safety
- Assists in identifying and determining the adequacy of existing defense-in-depth

Using Defense-in-Depth Analysis[™] to Quantify Likelihood of Threat Realization

Initiating	Defense	Defense	Defense		
Event	Layer 1	Layer 2	Layer 3	OUTCO	OME
Threat					
Realization				5.00E-05	Unwanted
Frequency			0.05		Event
		0.1			
	0.1				
0.1					No
	0.9	0.9	0.95	7.70E-02	Event

 $F = 0.1 / yr * 0.1 * 0.1*.05 = 5 \times 10^{-4} / yr$

Using Defense-in-Depth Analysis[™] to Quantify Likelihood of Threat Realization

INITIATING EVENT	Layer 1	Layer 2	OUTCOME
Virus enters	Firewall fails to	Anti-virus	System Infected
Corporate Network	prevent spread	Fails	with Virus
	of virus		2.50E-03
		0.25	
	0.1		
0.1 /yr			
			No Event

$F = 0.1 / yr * 0.1 * 0.25 = 2.5 \times 10^{-3} / yr$

Copyright © 2010 - exida

Defense-in-Depth Analysis[™] is a trademark of exida Consulting LLC

The Maintain Phase

- Establish and document a patch management procedure
- Establish and document an anti-virus management procedure
- Establish and document a backup and restore procedure
- Establish and document an Incident response plan
- Manage and test changes
- Conduct Periodic audits

Patch Management

- 95% of all network intrusions could have been avoided by keeping systems up to date with appropriate patches.
- Cannot automatically deploy new patches into the controls environment without risking disruption of operations.
- Careful policy is required to balance the need for reliability with the need for security.
- "Patch Management for Control Systems" NERC Security Guidelines for the Electric Sector, May, 2005 provides guidance

Patch Management (cont'd)

- First all machines are prioritized and categorized into groups that define when and how they are to be patched. Example:
 - "Early Adopters" receive patches as soon as available and act as Test/Quality Assurance machines.
 - "No Touch" machines require manual intervention and/or detailed vendor consultation.
- Next procedure established for keeping track of new patches and level of importance to control operations.

Anti-Virus Management

- Malware related incidents are the number one cause of cyber-related production losses and upsets in process control systems.
- Viruses are having a major impact on control systems and are likely to do so for the foreseeable future.
- Commonly believed that anti-virus software is incompatible with process control systems and thus should not be used on the plant floor.
- This is NOT TRUE!!! All major DCS and PLC vendors now support anti-virus software on their Windows-based platforms.

Anti-Virus Management (cont'd)

- Use a mixed deployment systems:
 - Anti-virus scanning at the control system firewall.
 - Automatic updating for non-critical systems or systems with vendor approved update schemes.
 - Manual scheduled updates for more difficult systems.
- Focus on anti-virus signatures in all computers located in the DMZ.
- A dedicated anti-virus server can located in the DMZ.

The Security Lifecycle

Assess

Perform risk assessment and gap analysis (existing)

> Establish Zones & Conduits (Z&C)

Determine appropriate Security Level targets

Implement

Design Z&Cs to meet target Security Levels

Validate and test

Determine the achieved Security Level

Maintain

Conduct periodic vulnerability assessments

Test & deploy patches Implement additional

security measures (if necessary)

Adapted from ISA S99.01.01

For more information...

- Exida Security (<u>www.exida.com/security</u>)
- DHS Control System Security (<u>www.us-cert.gov</u>)
- ISA Standards (<u>www.isa.org</u>)
- IEC Standards (<u>www.iec.ch</u>)
- NIST Standards (<u>www.nist.gov</u>)
- CFATS Information (<u>www.dhs.gov</u>)
- ISASecure (<u>http://www.isasecure.org/</u>)
- WIB (<u>http://www.wib.nl/index.html</u>)